
BPX Bridge documentation

Introduction
Chains list
Assets list
Transaction flow
Relayer selection algorithm
Smart contracts
Bridge contract methods
Becoming a relayer
Relayer software

BPX Bridge

BPX Bridge is the official cross-chain bridge between the BPX chain and other EVM-compatible
networks.

The bridge can be used to transfer popular cryptocurrencies and stablecoins to the BPX chain as a
1:1 wrapped tokens, as well as transfer the BPX coin to other chains. This makes it possible to use
reputable tokens in decentralized applications running on the BPX chain, as well as trading the BPX
coin on popular DEXes, like Uniswap, Pancakeswap.

BPX Bridge is fully decentralized and non-custodial. It means that:

It does not rely on any centralized infrastructure under the control of developers.
Everything is implemented using on-chain smart contracts and trustless P2P
communication.
Anyone can participate in the validation of transactions passing through the bridge,
earning money from transaction fees.
Project developers do not have access to users funds, they do not store these funds in
their wallets, the funds are locked in smart contracts.
In the near future, after implementing governance contracts, BPX holders will decide
about the protocol updates, supported networks and assets.

The official instance of the Bridge client application is available at:
https://bridge.bpxchain.cc

Introduction

https://bridge.bpxchain.cc

BPX Bridge currently operates on the following chains:

Chains list

Chain ID Name Bridge contract address

279 BPX 0x53fa3006A40AA0Cb697736819485
cE6D30DEAEb5

42161 Arbitrum 0x5CD1A383d9C881577dDF6E5E092
Db25b2D50e9B3

137 Polygon 0x5CD1A383d9C881577dDF6E5E092
Db25b2D50e9B3

43114 Avalanche C-Chain 0x5CD1A383d9C881577dDF6E5E092
Db25b2D50e9B3

BPX Bridge currently supports the following assets:

Original asset Original chain Wrapped asset Wrapped asset chain

BPX Chain (BPX)

native token

BPX Chain

BPX Chain (BPX)

0x602d550a4cA5eAe83195
486AC85dC40032dAA787

Arbitrum

BPX Chain (BPX)

native token

BPX Chain

BPX Chain (BPX)

0x602d550a4cA5eAe83195
486AC85dC40032dAA787

Polygon

BPX Chain (BPX)

native token

BPX Chain

BPX Chain (BPX)

0x602d550a4cA5eAe83195
486AC85dC40032dAA787

Avalanche C-Chain

Ethereum (ETH)

native token

Arbitrum

�� Ethereum (ETH)

0x8EF2a6c2a7f6ed5ef63D4
d9667C1CCd09C2721C8

BPX Chain

Polygon (MATIC)

native token

Polygon

�� Polygon (MATIC)

0x43A478B2A63098De753
b345f0dFCBa24Da06849d

BPX Chain

Avalanche (AVAX)

native token

Avalanche C-Chain

�� Avalanche (AVAX)

0xA303b26580e0eB63fAcE
C99E26B4A8a6b549e550

BPX Chain

Tether USD (USDT)

0xfd086bc7cd5c481dcc9c8
5ebe478a1c0b69fcbb9

Arbitrum

�� Tether USD (USDT)

0x67c7950934833E001cfc8
c62E903EaeC69D34790

BPX Chain

Tether USD (USDT)

0xc2132D05D31c914a87C6
611C10748AEb04B58e8F

Polygon

�� Tether USD (USDT)

0x67c7950934833E001cfc8
c62E903EaeC69D34790

BPX Chain

Tether USD (USDT)

0x9702230A8Ea53601f5cD
2dc00fDBc13d4dF4A8c7

Avalanche C-Chain

�� Tether USD (USDT)

0x67c7950934833E001cfc8
c62E903EaeC69D34790

BPX Chain

Assets list

USD Coin (USDC)

0xaf88d065e77c8cC223932
7C5EDb3A432268e5831

Arbitrum

�� USD Coin (USDC)

0x0b2ffE5CC332B72293Ca
87d48ae9400bFd9Ba97e

BPX Chain

USD Coin (USDC)

0x3c499c542cEF5E3811e1
192ce70d8cC03d5c3359

Polygon

�� USD Coin (USDC)

0x0b2ffE5CC332B72293Ca
87d48ae9400bFd9Ba97e

BPX Chain

USD Coin (USDC)

0xB97EF9Ef8734C71904D8
002F8b6Bc66Dd9c48a6E

Avalanche C-Chain

�� USD Coin (USDC)

0x0b2ffE5CC332B72293Ca
87d48ae9400bFd9Ba97e

BPX Chain

We have established a convention that all tokens wrapped by the bridge on the BPX chain
have the "bridge at night" emoji (��) at the beginning of their original name and original token
symbol.

However, wrapped BPX on externals chains is always named "BPX Chain" and has the
original symbol "BPX".

We do not add any prefixes, like WBPX, WETH, unless the original asset already have one.

Each bridge transaction proceeds according to the following scheme:

1. The user initiates a source asset transfer to the bridge contract running on the source
blockchain. If the source asset is a native blockchain token, the user transacts to the
bridge contract's transfer() method. If the source asset is an ERC-20 token, the user
transacts to the token's approve() method, then transacts to the bridge contract's
transferERC20() method.

2. If the user sent the original token to get wrapped one, the token is locked in the bridge
contract. If the user sent the wrapped token to recover the original asset, the wrapped
token is burned.

3. The bridge contract generates a cross-chain message - a bytes string that contains all
transaction details. The MessageCreated() event is emitted.

4. Bridge relayers constantly listen for bridge contract events. After receiving information
about a new message, each relayer performs a checks according to a deterministic
algorithm whether it should sign this message or not. Only 8 relayers out of all will be
delegated to sign a certain message.

5. Selected relayers sign the message with their private key and send it to the user using the
Synapse network.

6. The user waits for all 8 signatures to be received and checks their validity and compliance
with the algorithm rules.

7. The user sends a cross-chain message with 8 signatures to the bridge contract running on
the destination chain by transacting to the messageProcess() method. In the same
transaction, the user pays a bridge fee.

8. The bridge contract validates the message, checks whether the signatures are correct and
come from exactly those relayers that were selected by the algorithm.

9. If the user unwraps the wrapped tokens, the bridge contract sends the original assets
back to the user's wallet. If the user wraps assets, the bridge contract mints the wrapped
token to the user's wallet. Additionally the bridge contract divides the received fee into 8

Transaction flow

https://docs.bpxchain.cc/uploads/images/gallery/2024-05/Rwg4HqnFlIWKBxEW-bridge-transaction-flow.png

equal amounts and adds them to the balances of relayers involved in a given transaction
processing.

10. The user receives the destination assets on the destination blockchain.

BPX Bridge associates each transaction and signature to a so-called epoch - 20-minute period of
time. When the epoch changes, for the same transaction, the set of selected validators will be
completely different. So if a transaction cannot be completed in a given epoch due to a relayer
failure, the algorithm will select a different set of relayers within 20 minutes at the latest and the
transaction will not be stuck forever.

The algorithm for delegating 8 relayers for a transaction going through the bridge works as follows:

1. The bridge smart contract keeps a list of all wallet addresses that have registered as a relayer.
Let’s visualize this list as a circle, because the algorithm is based on infinite shifting of the relayers
list. For example, if there are 20 relayers in total, we will be adding a number 10, or 20, or 100, etc.
to the index 15 to jump over the end of the list and get the relayer with index of 5 again, instead
of getting non-existing relayer 25.

2. The smart contract picks up 8 individual spacings between relayers. These values will remain
constant throughout the entire bridge epoch. To calculate these spacings, we are using
transaction-independent pseudorandom data – hashes of previous blocks in the chain. Therefore

Relayer selection algorithm

https://docs.bpxchain.cc/uploads/images/gallery/2024-05/PLRoOvq9qOyt50cw-bridge-relayer-algo1.png

the bridge user has no influence on the calculated values. If we relied on transaction-dependent
data, a hostile user could craft the transaction parameters in a such way, that only hostile relayers
under his full control were delegated to validate the transaction. In our example, the calculated
spacings have the following values: 3, 4, 1, 6, 2, 8, 7, 2.

3. For each transaction, the displacement of relayers list is calculated. We are shifting the entire list
by a value based on transaction-dependent data, so each transaction, even in the same epoch, has
a different set of relayers. Potential hostile bridge user can influence the calculated displacement
by modifying the transaction parameters, but is still unable to modify the spacings from the
previous step.

https://docs.bpxchain.cc/uploads/images/gallery/2024-05/OycEoZki8yV7exCu-bridge-relayer-algo2.png

4. After applying the displacement, relayers selected to validate the transaction are as follows: 7,
11, 12, 18, 0, 8, 15, 17. The order is important - the signatures will be invalid if they are swapped.

https://docs.bpxchain.cc/uploads/images/gallery/2024-05/6K29IAz1PB1RbUv0-bridge-relayer-algo3.png

If the algorithm happens to select the same relayer twice or more, the next available relayer
in the list is selected instead.

https://docs.bpxchain.cc/uploads/images/gallery/2024-05/sfAh5RUhl7UTX6WV-bridge-relayer-algo4.png

All BPX Bridge smart contracts are open source and available in the public GitHub repository:
https://github.com/bpx-chain/bridge-contracts

This contract is deployed only on the BPX chain. In addition to the standard bridge logic, it contains
a map of all supported chains and assets and a set of methods that resolve the local token contract
address to the remote one and vice versa.

This contract is deployed on all chains except BPX. It contains the standard bridge logic, but it does
not contain a map of supported chains and assets. The only allowed opposite chain is BPX and in all
generated messages it includes local addresses of the token contracts, which must be resolved by
the BridgeHome contract on the opposite side of the bridge.

Typical Solidity proxy contract that enables future updates of the BridgeHome and BridgeForeign
contracts.

The smart contract of any token wrapped by the bridge. A classic ERC-20 implementation that does
not perform any additional functions apart from minting and burning by the owner. The owner is
always the bridge contract.

Smart contracts

BridgeHome.sol

BridgeForeign.sol

Proxy.sol

BridgedToken.sol

https://github.com/bpx-chain/bridge-contracts

These are all the public methods exposed by the underlying Bridge contract from which both the
BridgeHome and BridgeForeign contracts inherit.

In the BridgeHome contract (running on the BPX chain), it queries the assets database and returns
the remote token contract address by provided remote chain ID and local token contract address.

In the BridgeForeign contract (running on other chains), it just returns the contractLocal
parameter.

Checks the signatures of a cross-chain message before actually posting it for execution.

Returns addresses of 8 relayers delegated to sign a given message in the given epoch.

Executes a signed cross-chain message and transfers funds to the destination wallet. The function
is payable and requires a bridge fee which will go to the relayers as their earnings. The fee amount
must meet both conditions:

The fee must be greater than or equal to the gas price of the current transaction (
tx.gasprice) multiplied by 21000
The fee must be divisible by 8

Bridge contract methods

Asset methods
function assetResolve(uint256 chainId, address contractLocal) view returns (address)

Message methods
function messageCheckSignatures(uint256 chainId, bytes32 messageHash, tuple(uint8 v, bytes32

r, bytes32 s)[8] signatures, uint64 sigEpoch) view returns (address[8])

function messageGetRelayers(uint256 chainId, bytes32 messageHash, uint64 epoch) view returns

(address[8])

function messageProcess(bytes message, tuple(uint8 v, bytes32 r, bytes32 s)[8] signatures,

uint64 sigEpoch) payable

Activates the caller wallet as a bridge relayer. Activation takes effect from the next epoch after the
current one. The function is payable and requires a relayer stake deposit. The amount of the
required stake can be checked by the relayerGetStake method.

Deactivates the caller wallet as a bridge relayer. Deactivation takes effect from the next epoch
after the current one.

Returns the entire relayer balance (deposited stake + all earnings).

Returns the stake amount required to become a bridge relayer.

Returns whether the relayer is active or not (bool) and from which epoch it has its current
activation status (uint64).

Returns the relayer balance available for withdrawal. For an active relayer, these will be be only
earnings. For an inactive relayer, it will be a stake + all earnings.

Withdraws funds from the caller relayer balance. The amount of funds that can be withdrawn can
be checked using the relayerGetWithdrawalMax method.

Relayer methods
function relayerActivate(uint256 chainId) payable

function relayerDeactivate(uint256 chainId)

function relayerGetBalance(uint256 chainId, address relayerAddr) view returns (uint256)

function relayerGetStake(address relayerAddr) view returns (uint256)

function relayerGetStatus(uint256 chainId, address relayerAddr) view returns (bool, uint64)

function relayerGetWithdrawalMax(uint256 chainId, address relayerAddr) view returns (uint256)

function relayerWithdraw(uint256 chainId, address to, uint256 value)

Transfer methods
function transfer(uint256 dstChainId, address dstAddress) payable

Initiates the transfer of a native token. This function is payable and transaction should have the
value to be transferred by the bridge.

Initiates an ERC-20 token transfer. The bridge contract must be approved to perform an ERC-20
transfer from caller wallet (ERC-20 approve() method).

function transferERC20(address srcContract, uint256 dstChainId, address dstAddress, uint256

value)

Anyone can become a BPX Bridge relayer and validate transactions passing through the bridge. For
helping maintain the bridge secure, relayers are paid in each blockchain native currencies.

To become a relayer, the following conditions must be met:

You must have a fast and stable Internet connection, uninterrupted power supply and a
server running 24/7 with Windows, Linux or Mac OS. VPS in the dedicated hosting
company is also allowed.
You must have the RPC access to full nodes of BPX Chain and other blockchains for which
you want to relay transactions. Using the public RPC endpoints is strongly discouraged,
local nodes are preferred.
You must activate your relayer wallet in bridge smart contracts and thus deposit a relayer
stake for each relay direction. For example, if you only want to relay transactions coming
from the BPX network to Arbitrum, you must only deposit on the Arbitrum network. If you
want to relay transactions going both ways, you need to deposit on both networks. If you
want to validate transactions between the BPX, Arbitrum and Polygon in all allowed
directions, you must deposit on the Arbitrum network, deposit on the Polygon network,
and deposit on the BPX network twice. Of course, after unregistering the relayer, you
could immediately withdraw all deposited funds, and for the whole time deposits are
locked by a smart contracts. BPX developers are not their custodians.
You must run the open source relayer software for each relay direction and ensure it is
always running without any issues.

Current relayer stake amounts in all supported chains:

Chain Relayer stake

BPX Chain 3,000,000 BPX

Arbitrum 0.25 ETH

Polygon 1500 MATIC

Avalanche C-Chain 25 AVAX

Becoming a relayer

Relayer stake is a crucial mechanism for ensuring bridge security. Without this deposit, one
person could register millions of relayer wallets and thus gain a huge probability of being
able to sign transactions themselves, without other honest relayers. Additionally, the deposit
enforces relayer to unregister from the smart contract to end their relaying activity which
protects the bridge against stucked transactions because of lack of signature from
"abandoned" relayer.

The official JavaScript (node.js) implementation of the relayer software is available here:
https://github.com/bpx-chain/bridge-relayer

The software works on all popular operating systems. The only requirements are Node.js and npm
installed.

Relayer software

Installation
git clone https://github.com/bpx-chain/bridge-relayer

cd bridge-relayer

npm install

Usage
$ node bbrelay.js -h

Usage: bbrelay [options]

BPX Bridge relayer

Options:

 -s, --src-rpc <url> Source chain RPC URL

 -d, --dst-rpc <url> Destination chain RPC URL

 -k, --wallet-key <key> Relayer wallet private key

 -h, --help display help for command

https://github.com/bpx-chain/bridge-relayer

