
Architecture Overview
Beacon Client
Execution Client
Farmer
Harvester
Timelord
Wallet

Architecture

The above diagram shows BPX network architecture. A single machine can run more than one of
these processes. Typical BPX network full node consist of two processes: Beacon Client and
Execution Client. Additionally, Farmer and Harvester are activated to farm new blocks.

Architecture Overview

https://docs.bpxchain.cc/uploads/images/gallery/2023-06/5Pd2UfnhPlK1bdMD-architecture.png

The Beacon Client serves as a full node for the BPX Beacon Chain with several key
responsibilities:

1. Maintaining a complete copy of the Beacon Chain.
2. Validating Beacon Chain blocks.
3. Propagating new beacon blocks and proofs across the peer-to-peer network.
4. Providing consensus updates to the Execution Client.

Beacon Clients are continually connected to a random subset of other Beacon Clients within the
network. They distribute new blocks to peers, enabling all nodes to maintain a full copy of the
blockchain.

Beacon Clients communicate with one another over TCP port 6201.

Beacon Client

The Execution Client functions as a full node for the BPX Execution Chain. It listens for new
transactions broadcast on the network, maintains the mempool, executes transactions within the
EVM, creates and validates execution blocks, and holds the latest state and database of the
Execution Chain.

The Execution Chain lacks an internal consensus algorithm. Instead, it exposes the Engine API on
TCP port 8551, allowing the Beacon Client to connect and provide consensus updates, including
new block candidates, chain head updates, and requests to generate new blocks.

Execution Clients communicate with each other over a listener TCP port and a discovery UDP
port, both defaulting to 30303. Each Execution Client also provides access to the Web3 RPC API
on TCP port 8545, which supports interaction with wallets, developer tools, and dApps.

Execution Client

BPX farmers are analogous to Bitcoin's miners. They earn block rewards and fees by finding valid
proofs of space inside their stored plots. The farmer processes don't maintain a copy of the Beacon
Chain, but they trust a beacon client to provide updates. The beacon client and farmer processes
communicate with each other using the farmer protocol.

Farmers communicate with harvesters (individual machines, including the farmer machine, that
actually store the plots) through the harvester protocol.

Farmers operate by waiting for updates from a beacon client, which gives them new signage points
(equivalent to a lottery's winning numbers) approximately every nine seconds. Farmers then send
the signage point to each harvester, to check whether any winning proofs of space exist. If the
harvester finds any valid proofs, it sends them to the farmer. Farmer has a private key, which is
used for signing blocks. After receiving signed block from the farmer, beacon client creates a new
beacon chain block and propagates it accross the network.

Farmer

Harvesters are individual machines controlled by a farmer. In a large farming operation, a farmer
may be connected to many harvesters.

Harvesters control the actual plot files by retrieving qualities or proofs from disk. The minimum plot
size (and by far the most common) is k32, which corresponds to around 100 GiB. With each
increment of a k-value, the plot size roughly doubles, so a k33 plot is around 200 GiB, k34 is
around 400 GiB, etc.

The difficulty level automatically adjusts every 4608 beacon chain blocks to target one proof of
space - across the entire network - for every two signage points. This is the targeted average value
- there can also be zero or multiple proofs per signage point. This leads to a difficulty adjustment
approximately every 12 hours.

Given a plot, the harvester must perform two tasks to find a valid proof:

1. Fetch the initial quality - this requires around seven random disk seeks, or 70 milliseconds
on a slow HDD.

2. (Only performed if the initial quality is sufficiently high) Fetch the full proof - this requires
around 64 disk seeks, or 640 milliseconds on a slow HDD.

For most challenges, the quality (step 1) will be very low, so fetching the entire proof (step 2) will
not be necessary. A node has 28 seconds to return a proof, so disk I/O will not be a limiting factor,
even when proofs are stored on slow HDDs.

Finally, harvesters also maintain a private key for each plot. The blocks are signed with these keys.

Harvester

Tape drives are too slow for farming. The protocol was designed to support hard disks, but
nothing slower. It is possible to use tape for long-term plot storage, only transferring the
plots to disks for occasional farming, but this is likely a very rare use case.

Timelords support the network by creating sequential proofs of time (using a Verifiable Delay
Function) and broadcasting them approximately every nine seconds. This provides "deterministic
randomness", which is used to decide the winning proofs of space.

Since this computation is sequential, very little energy is consumed, as opposed to proof-of-work
systems, where computation is parallelizable. For example, if 100 timelords are doing the same
computation on a proof of time, they will all create the exact same output.

A timelord is required to connect to exactly one beacon client, typically on the same machine. This
connection is verified with a certificate. This 1:1 architecture has a large security benefit: it keeps
the timelord sandboxed in its own private network. That way, the beacon client protocol is the only
protocol that requires total security. If more than one beacon client could connect to the same
timelord, it would add a potential attack vector to the network.

Timelords do not directly earn rewards. Furthermore, only the fastest timelord on the network will
broadcast proofs at any given time. Therefore, only one timelord is required to keep the network
running, and most farmers will not feel compelled to run one. However, farmers with multi-PiB
farms may want to run a timelord, both for redundancy and for protection against temporary local
latency issues.

If someone controls the fastest timelord in the world, it doesn't give them much of an advantage at
winning rewards. However, they could potentially orphan or censor other farmers, depending on
how much faster their timelord is.

Furthermore, an attacker with a significantly faster timelord than anyone else could potentially run
a long-range attack against the network with less than 42.7% of the total netspace. For security
purposes, it is very important to maintain open designs of VDF hardware.

There are two primary types of Timelords: Regular and Blueboxes.

The first is the core Timelord that takes in Proofs of Space and uses a single fastest core to perform
repeated squaring in a class group of unknown order as fast as possible. Beside each running VDF
(referred to as a vdf_client in the application and source) is a set of proof generation threads that
accumulate the proof that the time calculation's number of iterations was done correctly.

Timelord

Types of Timelords

The second are Bluebox Timelords. Blueboxes are most any machine - especially things like old
servers or gaming machines - that scour the historical chain looking for uncompressed proofs of
time. So that the chain moves quickly, the regular Timelords use a faster method of generating
proofs of time but the proofs are larger, which takes your Raspberry Pi a lot more time and effort to
validate and sync the blockchain. A Bluebox picks up an uncompressed Proof of Time and recreates
it, but this time with the slower and more compact proofs generated at the end. Those are then
gossiped around to everyone so they can replace the large and slow to verify Proofs of Time with
the compact and much quicker to validate version of exactly the same thing.

The network only requires one running Timelord to keep moving (liveness.) The way Timelords race
is like they are on a series of 100 meter dashes. Each one takes off with the last good Proof of
Space and tries to get to the total number of iterations required to complete a given Proof of
Space. Better Proofs of Space require less iterations to prove. When the fastest Timelord
announces the Proof of Time for this Proof of Space all of the other Timelords stop racing and are
magically teleported to the starting line of the next 100 meter dash to start it all over again.

It's good to have a few Timelords out there. There can be things like routing flaps or the
overzealous backhoe that takes large swaths of the internet offline. If the fastest Timelord was just
about to win the current dash when its internet blinked off in a fury of construction misadventure,
then the second fastest will win that dash and the next dashes - until the fastest returns. One of
the key qualities about Proofs of Time is that given the same Proof of Space, their output and proof
are always the same (though the proofs can be larger or smaller and harder or easier to validate -
they all end up with the same outcome.)

BPX developers plans to run a few Timelords around the world - and some backups too - to ensure
that all Farmers and nodes can hear the beat that the Timelords are calling.

If you want to run a Timelord on Linux/MacOS, first follow the Install from Source instructions here.
Then run:

Timelords execute sequential verifiable delay functions (proofs of time or VDFs), that get added to
blocks to make them valid. This requires fast CPUs and a few cores per VDF.

Running a Timelord

Installing a Timelord

. ./activate

sh install-timelord.sh

bpx start timelord

On MacOS x86_64 and all Linux distributions, building a Timelord is as easy as running bpx start
timelord in the virtual environment. You can also run ./vdf_bench square_asm 400000 once you've
built Timelord to give you a sense of your optimal and unloaded ips. Each run of vdf_bench can be
surprisingly variable and, in production, the actual ips you will obtain will usually be about 20%
lower due to load of creating proofs. The default configuration for Timelords is good enough to just
let you start it up. Set your log level to INFO and then grep for "Estimated IPS:" to get a sense of
what actual ips your Timelord is achieving.

Once you build the Timelord with sh install-timelord.sh in the virtual environment, you will need
to make two changes to ~/.bpxchain/beacon/config/config.yaml . In the timelord : section, set
bluebox_mode to True . Then you need to proceed to the beacon section and set
send_uncompact_interval to something greater than 0. We recommend 300 seconds there so that
your Bluebox has some time to prove through a lot of the un-compacted Proofs of Time before the
node drops more into its lap. The default settings may otherwise work but if the total effort is a
little too much for whatever machine you are on you can also lower the process_count: from 3 to 2,
or even 1, in the timelord_launcher section. You know it is working if you see VDF Client: Sent
proof in your logs at INFO level.

One of the things that is great about BPX consensus is that it makes it almost impossible for a
Farmer with a maliciously faster Timelord to selfishly Farm. Due to the way the consensus works, a
Farmer with a faster Timelord is basically compelled to prove time for all the farmers winning
blocks around him also. Maliciously running a faster Timelord can give a benefit when attempting
to 51% attack the network, so it is still important that over time we push the Timelord speeds as
close to the maximum speeds of the silicon processes available. We expect to have the time and
the resources to do that right and make open-source hardware versions widely available.

Due to restrictions on how MSVC handles 128 bit numbers and how Python relies upon MSVC,
it is not possible to build and run Timelords of all types on Windows.

Regular Timelords

Bluebox Timelords

Timelords and Attacks

The wallet is responsible for managing private keys, as well as generating, storing and sending
transactions. Wallets communicate with the execution clients through the Web3 RPC API. Each
execution client exposes the API on TCP port 8445.

You can also connect your wallet to a public RPC node provided by us, using the configuration
parameters below:

BPX Chain is compatible with all popular wallets dedicated for EVM chains, e.g. Metamask or
Trust Wallet.

Wallet

Network name: BPX Chain
New RPC URL: https://rpc.bpxchain.cc
Chain ID: 279
Currency symbol: BPX
Block explorer URL: https://explorer.bpxchain.cc

