Foliage

In the previous diagrams, there is no place for farmers to specify their rewards, since all blocks are
canonical. There is also no place to include execution layer data. Everything we have talked about
so far is the trunk of the blockchain.

Farmers have no say in how their block is constructed in the trunk, since they must use the exact
proof of space, VDFs, and signatures that are specified. In order to include farming rewards, as well
as execution payload with transactions, in the system, we must introduce an additional component
of beacon blocks called foliage.

Trunk: The component of beacon blocks and the beacon chain which includes VDFs, proofs of
space, PoSpace signatures, challenges, and previous trunk blocks, and is completely canonical. The
trunk never refers to the foliage chain.

Foliage: The component of beacon blocks and the beacon chain which includes specification of
where rewards should go, execution chain payload with user transactions, and what the previous
foliage block is. This is up to the farmer to decide and is grindable, so it can never be used as input
to the challenges.

Re-org: A re-org (or reorganization) is when a node's view of the peak changes, such that the old
view contains a block that is not included in the new view (some block has been reversed). Both
trunk and foliage re-orgs are possible, but should be rare in practice, and low in depth.

In the diagram below we can see that the foliage is added to blocks to produce an additional chain.
This foliage includes a hash of the previous foliage, a reward block hash, and a signature. These
foliage pointers are separate from the trunk chain, and are not canonical. That is, farmers could
theoretically create a foliage re-org where foliage is replaced, but the exact same trunk (proofs of
space and time) are used.

To prevent a foliage re-org, honest farmers only create one foliage block per block. As soon as one
honest farmer has added a foliage block, the foliage becomes impossible to re-org beyond that
height with the same PoSpace, since that farmer will not sign again with the same PoSpace.

Furthermore, blocks like B3, which come parallel with another foliage block (B2), do not have to
sign the previous foliage block, since they do not necessarily have enough time to see it.

By "coming in parallel", we mean that the second block's signage point occurs before the
first block's infusion point.

The red arrows in the diagram represent a foliage pointer that is signed by the plot key for the
proof of space in that block. The gray arrows represent a hash pointer which is not signed by the

plot key (therefore the gray arrow in B3 can be replaced if B2 changes or is withheld). This
prevents attacks where B2 modifies their block and forces B3 to re-org.

Blocks which have red pointers are also eligible to create execution chain block, and are therefore
called transaction blocks.

A block is a transaction block if and only if it is the first block whose signage point
occurs after the infusion of the previous transaction block.

In the diagram, sp3 comes before B2, (a transaction block, and the previous block of B3), so B3
cannot be a transaction block.

The red arrows provide security by burying foliage blocks, but the gray arrows do not. The purpose
of the gray arrows is to maintain a linked list in the foliage, and to reduce complexity in
implementations. However, blocks with gray arrows pointing to them do get buried in the next-next
block.

ccspl ccipl ccsp2 cesp3 ccip2 ccip3 ccspd ccipd

............. ® RSN o ST >§® (X

\/ Infused \\
el) Tesi b challengechain ... N>
Rewards fe spl
W N
chain |} Q] BL i (S 8| B2 || B3 fo =3/ S

deficit 16 deficit 15 rc 5p2 rc Sp3 deficit 14 deficit 13 deficit 13 deficit 12

i ! i
<1 Foliage |- Foliage |-a—] Foliage |«= Foliage
ransactions

transactions transact tions

The block hash is a hash of the entire foliage and trunk block. Re-orgs work on block hashes. Even
if we see a chain with the same proofs of space and time, as long as the foliages are different, the
blocks will have different hashes.

Note that the farmers of blocks B2 and B3 might both have a chance to create the block, so they
must both provide the signed pointer and execution payload. However, any transaction block can
be included as a normal block as well, and since B2 and B3 are in parallel, only one of them can
make a transaction block.

While all blocks still choose the account address of where their rewards go, those execution chain
block do not get withdrawn into the execution chain until the next transaction block.

Transaction Block Time

https://docs.bpxchain.cc/uploads/images/gallery/2023-06/vLSO6pDev5w3Qbn5-foliage.png

The average time between transaction blocks is 52 seconds. Several values are required to
calculate this average:

e Sub-slot time = 300 seconds

Signage point time = 64 per sub-slot, or 300/64 = 4.69 seconds

Average block time = 32 per sub-slot, or 300/32 = 9.38 seconds

Minimum signage points from current signage point until infusion_iterations is reached =

3

Minimum time for infusion_iterations to be reached (and therefore, minimum time

between transaction blocks) = 3 * (300/64) = 14.06 seconds

e Average signage points until infusion_iterations is reached is slightly more than 3.5 (must
wait 3 signage points, plus an average wait of about 50% of the next signage point), or
around 3.5 * 4.69 = 16.42 seconds.

e To create a transaction block, infusion_iterations first must be met, and then the next
block some seconds afterwards will be a transaction block. The total average time for this
to happen is around 26 seconds.

The time between transaction blocks was deliberately chosen for a specific game-theoretic reason:
If transaction blocks occurred at the same rate but there were no empty blocks between them, re-
orgs and bribery attacks would be easier to pull off.

Additionally, the fact that there are empty blocks between transaction blocks provides several
benefits:

e If blocks were created at the same rate and all of them contained transactions, low-power
machines such as the Raspberry Pi wouldn't be able to keep up with the chain and
therefore wouldn't be supported.

e Empty blocks can also help dampen the effect of the chain slowing down, for example
during a dust storm.

e Finally, empty blocks help to smooth farmers' rewards.

Revision #5
Created 5 June 2023 14:43:14 by Admin
Updated 30 October 2024 18:14:15 by Admin

