Proof of Time

A Verifiable Delay Function, also referred to as a Proof of Time or VDF, is a proof that a sequential
function was executed a certain number of times.

Verifiable: This means that after performing the computation (which takes time), the Prover can
create a very small proof in a very short time, and the Verifier can verify this proof without having
to redo the whole computation.

Delay: This means that the Prover actually spent a real amount of time (although we don't know
exactly how much) to compute the function.

Function: This means it's deterministic: computing a VDF on an input x always yields the same
resulty.

The key word here is "sequential”, like hashing a number many times: hash(hash(hash(a))), etc.
This means the prover cannot just add more machines to make the function execute faster.
Therefore we can assume that computing a VDF requires real (wall-clock) time. The construction
that we use is repeated squaring. The Prover must square a challenge x T times. This requires time
O(T). The Prover also must create a proof that this was performed properly.

challenge x

o

XM27T) and P
]

— ]

PRGT =N
Powerful CPU

verify B,

Prover

Verifier

Although the following details are not very important for understanding the consensus algorithm,
the choice of what VDF to use is relevant, because if an attacker succeeds in obtaining a much
faster machine, some attacks become possible.

The VDF used by BPX is repeated squaring in a class group of unknown order. There are two main
ways to generate a large group that has an unknown order:

1. Use an RSA modulus, and use the integers mod N as a group. The order of the group is
unknown if you can generate your modulus with many participating parties using an MPC


https://docs.bpxchain.cc/uploads/images/gallery/2023-06/CBfsuy5MLgIPK3r5-vdf.png

ceremony.

2. An easier approach is to use classgroups with a large prime discriminant, which are
groups of unknown order. This does not require any complex or trusted setup, so we
chose this option for BPX.

To create one of these groups, one just needs a large, random, prime number. The drawbacks are
that classgroup code is less tested in real life, and optimizations are less well-known than in RSA
groups. We use the same initial element for the squaring (a=2, b=1 classgroup element), and
instead use the challenge to generate a new random prime number for each VDF, which is used as
the discriminant. The discriminant has a size of 1024 bits, which means the proof sizes are around

1024 bits. We use the Wesolowski scheme split into n (1<=n<=64) phases so that creating the
proofs is very fast. Since the n-wesolowski proofs can be large, we replace them with 1-wesolowski
proofs as soon as they are available. These are smaller, but require more time to make. The proofs
themselves are not committed to on-chain, so they are replaceable.

Infusion

As a recap, VDFs take in an input, called a challenge, and produce an output, together with a proof
that certifies that the function was evaluated correctly.

A value, in this context, can be thought of as a block with a proof of space. The value is combined
with an output of a VDF, to generate a new value, which is used as the input/challenge for the next
VDF. This is known as an infusion of a value into a VDF.

Therefore, we are chaining VDFs, but committing to a new value in between. This is used so that
we have a linear progression of blocks, alternating proofs of space with proofs of time.

Revision #2
Created 5 June 2023 14:40:53 by Admin
Updated 6 June 2023 06:42:08 by Admin


https://eprint.iacr.org/2018/623

