Sighage and Infusion Points

Each sub-slot in both the challenge chain and the reward chain is divided into 64 smaller VDFs.
Between each of these smaller VDFs is a point called a signage point. Timelords publish the VDF
output and proof when they reach each signage point.

The challenge and reward chains both have signage points. The infused challenge chain,
however, does not.

The signage points occur every 4.69 seconds (64 signage points per 300-second sub-slot). The
number of iterations between each signage point is sp_interval_iterations, which is equal to sub-
slot_iterations / 64.

The challenge at the start of the sub-slot is also a valid signage point. As each of the 64 signage
points in the sub-slot is reached, those points are broadcast, starting from the fastest timelord's
beacon client, and propagating to every other beacon client on the network.

Farmers receive these signage points and compute a hash for each plot, at each signage point. If
the hash starts with nine zeros, the plot passes the filter for that signage point, and can proceed.
This disqualifies around 511/512 of all plot files in the network, for that signage point. The formula
to compute the filter hash is:

plot filter bits = sha256(plot id + sub slot challenge + cc signage point)

The proof of space challenge is computed as the hash of the plot filter bits:
PoSpace challenge = sha256(plot filter bits)

Using this challenge, the farmers fetch quality strings for each plot that made it past the filter.
Recall that this process requires around seven random disk seeks, which takes around 70 ms on a
slow HDD. The quality string is a hash derived from part of the proof of space (but the whole proof
of space has yet to be retrieved).

For both of our previous example, as well as the next example, we'll use the following values:

sub_slot_iterations = 100,000,000
sp_interval_iterations = sub_slot_iterations / 64 = 1,562,500

The farmer computes the required_iterations for each proof of space. If the required_iterations <
sp_interval_iterations, the proof of space is eligible for inclusion into the blockchain. At this point,
the farmer fetches the entire proof of space from disk (which requires 64 disk seeks, or 640 ms on
a slow HDD), creates an unfinished beacon block, and broadcasts it to the network.

https://docs.chia.net/consensus-challenges

For the vast majority of eligible plots, required_iterations will be far too high, since on
average 32 will qualify for the whole network for each 5-minute sub-slot. This is a random
process so it's possible (though unlikely) for a large number of proofs to qualify. The
signage_point_iterations is the number of iterations from the start of the sub-slot to the
sighage point. Any plot that does meet the required_iterations for a signage point will qualify
as there is no rivalry between winning plots.

The exact method for required_iterations is the following:

sp_quality string = sha256(quality string + cc_signage point)
required iterations = (difficulty
* difficulty constant factor
* int. from bytes(sp quality string, "big", signed=False)
// pow(2, 256) * expected plot size(size))

The difficulty constant factor is based on the initial constants of the beacon chain. The difficulty
varies per epoch. As you can see, the sp_quality_string is converted into a random number
between 0 and 1, by dividing it by 27256 , and then multiplied by the plot size.

For consensus purposes, the expected plot size iS ((2 * k) + 1) * (2 ** (k - 1)). , where
k>=32<50. The actual plot size is that value times a constant factor, in bytes. This is because each
entry in the plot is around k+0.5 bits, and there are around 2~(k) entries.

The infusion_iterations is the number of iterations from the start of the sub-slot at which the
block with at least the required quality can be included into the blockchain. This is calculated as:

infusion iterations (signage point iterations + 3 * sp interval iterations +

required iterations) % sub-slot iterations

Therefore, infusion_iterations will be between 3 and 4 signage points after the current signage
point. Farmers must submit their proofs and blocks before the infusion point is reached. The
modulus is there to allow overflows into the next sub-slot, if the signage point is near the end of
the sub-slot.

signhage point iters: 31.25M

sp interval iters = l infusion iters: 36.7223M
1.5625M '//
I!—r‘;;‘1‘r‘r1*1‘1 | I B I B B B | |1‘T'1I | B I I B B S e e e e | e | IH
»
\
- 64 signage points —~

3
signage
points

A drawing shows the infusion point as a green square marked bl . The first and last blocks of the
sub-slot are marked r1 and r2 , respectively. For this example, the farmer will create the block at

https://docs.bpxchain.cc/uploads/images/gallery/2023-06/wLhT4qP9sVpQ5puF-signage-points.png

the time of the signage point marked with a red arrow, which we'll call b1' .

At bl , the farmer's block gets combined with the VDF output for that point. This creates a new
input for the VDF from that point on, i.e. we infuse the farmer's block into the VDF. b1 is only fully
valid after two events have occurred:

1. infusion_iterations has been reached, and
2. Two VDF proofs have been included: one from r1 to the signage point and one from ri1
to bl . (Actually it's more since there are three VDF chains).

The farmer creates the block at the time of the signage point, b1' . However, b1l' is not finished
yet, since it needs the infusion point VDF. Once the infusion_iterations VDF has been released, it is
added to b1' to form the finished block at b1 .

Recall that in this example,

e sub-slot_iterations = 100M
e sp_interval_iterations is 1.5625M. Furthermore, let's say a farmer has a total of 1000
plots.

For each of the 64 signage points, as they are released to the network every 4.69 seconds, or
every 1.5625M iterations, the farmer computes the plot filter and sees how many plots pass. For
each passing plot, the farmer calculates required_iterations.

Let's say the farmer calculates required_iterations < 1.5625M once in the sub-slot. (We'll assume
the exact required_iterations = 0.7828M in this instance.) Figure 5 shows this happening at the
20th signage point.

infusion_iterations is then computed as:

infusion_iterations = signage_point_iterations + (3 * sp_interval_iterations) + required_iterations
= (sighage * point * sp * interval_iterations) + (3 * sp_interval_iterations) + required_iterations
= (20 * 1.5625M) + (3 * 1.5626M) + 0.7827M

= 36.7223M

After realizing they have won (at the 20th infusion point), the farmer fetches the whole proof of
space, makes a beacon block (optionally including execution payload), and broadcasts this to the
network. The block has until infusion_iterations (typically a few seconds) to reach timelords, who
will infuse the block, creating the infusion point VDFs. With these VDFs, the block can be finished
and added to the beacon chain by other beacon clients.

Revision #6
Created 5 June 2023 14:41:34 by Admin
Updated 30 October 2024 18:02:52 by Admin

