
Timelords support the network by creating sequential proofs of time (using a Verifiable Delay
Function) and broadcasting them approximately every nine seconds. This provides "deterministic
randomness", which is used to decide the winning proofs of space.

Since this computation is sequential, very little energy is consumed, as opposed to proof-of-work
systems, where computation is parallelizable. For example, if 100 timelords are doing the same
computation on a proof of time, they will all create the exact same output.

A timelord is required to connect to exactly one beacon client, typically on the same machine. This
connection is verified with a certificate. This 1:1 architecture has a large security benefit: it keeps
the timelord sandboxed in its own private network. That way, the beacon client protocol is the only
protocol that requires total security. If more than one beacon client could connect to the same
timelord, it would add a potential attack vector to the network.

Timelords do not directly earn rewards. Furthermore, only the fastest timelord on the network will
broadcast proofs at any given time. Therefore, only one timelord is required to keep the network
running, and most farmers will not feel compelled to run one. However, farmers with multi-PiB
farms may want to run a timelord, both for redundancy and for protection against temporary local
latency issues.

If someone controls the fastest timelord in the world, it doesn't give them much of an advantage at
winning rewards. However, they could potentially orphan or censor other farmers, depending on
how much faster their timelord is.

Furthermore, an attacker with a significantly faster timelord than anyone else could potentially run
a long-range attack against the network with less than 42.7% of the total netspace. For security
purposes, it is very important to maintain open designs of VDF hardware.

There are two primary types of Timelords: Regular and Blueboxes.

The first is the core Timelord that takes in Proofs of Space and uses a single fastest core to perform
repeated squaring in a class group of unknown order as fast as possible. Beside each running VDF
(referred to as a vdf_client in the application and source) is a set of proof generation threads that
accumulate the proof that the time calculation's number of iterations was done correctly.

Timelord

Types of Timelords

The second are Bluebox Timelords. Blueboxes are most any machine - especially things like old
servers or gaming machines - that scour the historical chain looking for uncompressed proofs of
time. So that the chain moves quickly, the regular Timelords use a faster method of generating
proofs of time but the proofs are larger, which takes your Raspberry Pi a lot more time and effort to
validate and sync the blockchain. A Bluebox picks up an uncompressed Proof of Time and recreates
it, but this time with the slower and more compact proofs generated at the end. Those are then
gossiped around to everyone so they can replace the large and slow to verify Proofs of Time with
the compact and much quicker to validate version of exactly the same thing.

The network only requires one running Timelord to keep moving (liveness.) The way Timelords race
is like they are on a series of 100 meter dashes. Each one takes off with the last good Proof of
Space and tries to get to the total number of iterations required to complete a given Proof of
Space. Better Proofs of Space require less iterations to prove. When the fastest Timelord
announces the Proof of Time for this Proof of Space all of the other Timelords stop racing and are
magically teleported to the starting line of the next 100 meter dash to start it all over again.

It's good to have a few Timelords out there. There can be things like routing flaps or the
overzealous backhoe that takes large swaths of the internet offline. If the fastest Timelord was just
about to win the current dash when its internet blinked off in a fury of construction misadventure,
then the second fastest will win that dash and the next dashes - until the fastest returns. One of
the key qualities about Proofs of Time is that given the same Proof of Space, their output and proof
are always the same (though the proofs can be larger or smaller and harder or easier to validate -
they all end up with the same outcome.)

BPX developers plans to run a few Timelords around the world - and some backups too - to ensure
that all Farmers and nodes can hear the beat that the Timelords are calling.

If you want to run a Timelord on Linux/MacOS, first follow the Install from Source instructions here.
Then run:

Timelords execute sequential verifiable delay functions (proofs of time or VDFs), that get added to
blocks to make them valid. This requires fast CPUs and a few cores per VDF.

Running a Timelord

Installing a Timelord

. ./activate

sh install-timelord.sh

bpx start timelord

On MacOS x86_64 and all Linux distributions, building a Timelord is as easy as running bpx start
timelord in the virtual environment. You can also run ./vdf_bench square_asm 400000 once you've
built Timelord to give you a sense of your optimal and unloaded ips. Each run of vdf_bench can be
surprisingly variable and, in production, the actual ips you will obtain will usually be about 20%
lower due to load of creating proofs. The default configuration for Timelords is good enough to just
let you start it up. Set your log level to INFO and then grep for "Estimated IPS:" to get a sense of
what actual ips your Timelord is achieving.

Once you build the Timelord with sh install-timelord.sh in the virtual environment, you will need
to make two changes to ~/.bpx/beacon/config/config.yaml . In the timelord : section, set
bluebox_mode to True . Then you need to proceed to the beacon section and set
send_uncompact_interval to something greater than 0. We recommend 300 seconds there so that
your Bluebox has some time to prove through a lot of the un-compacted Proofs of Time before the
node drops more into its lap. The default settings may otherwise work but if the total effort is a
little too much for whatever machine you are on you can also lower the process_count: from 3 to 2,
or even 1, in the timelord_launcher section. You know it is working if you see VDF Client: Sent
proof in your logs at INFO level.

One of the things that is great about BPX consensus is that it makes it almost impossible for a
Farmer with a maliciously faster Timelord to selfishly Farm. Due to the way the consensus works, a
Farmer with a faster Timelord is basically compelled to prove time for all the farmers winning
blocks around him also. Maliciously running a faster Timelord can give a benefit when attempting
to 51% attack the network, so it is still important that over time we push the Timelord speeds as
close to the maximum speeds of the silicon processes available. We expect to have the time and
the resources to do that right and make open-source hardware versions widely available.

Due to restrictions on how MSVC handles 128 bit numbers and how Python relies upon MSVC,
it is not possible to build and run Timelords of all types on Windows.

Regular Timelords

Bluebox Timelords

Timelords and Attacks

Revision #3
Created 5 June 2023 11:31:04 by Admin
Updated 5 June 2023 13:06:20 by Admin

